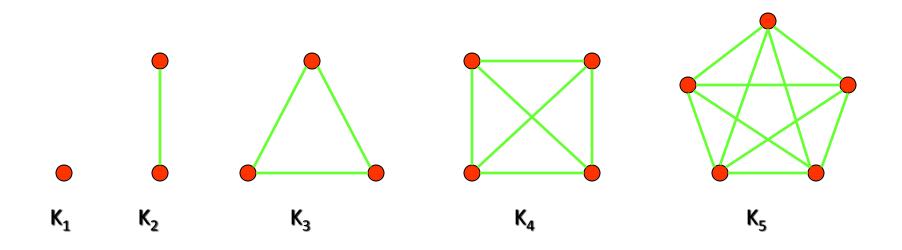
Graph Terminology

•**Theorem:** Let G = (V, E) be a graph with directed edges. Then:

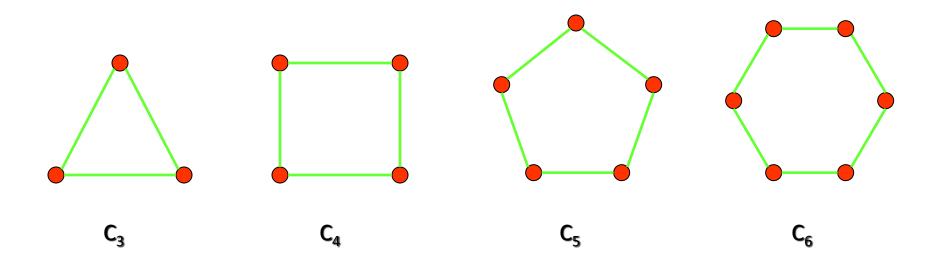
•
$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |\mathsf{E}|$$

•This is easy to see, because every new edge increases both the sum of in-degrees and the sum of out-degrees by one.

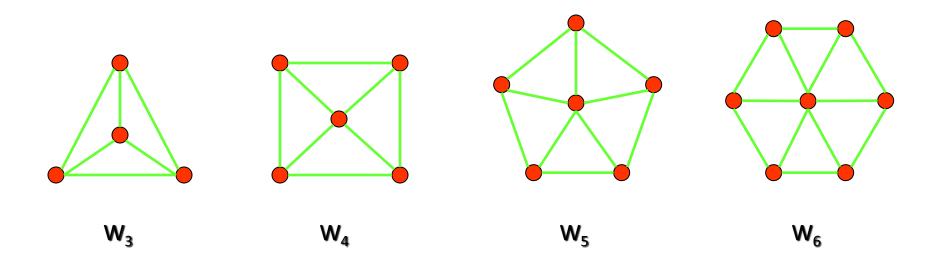
•Definition: The complete graph on n vertices, denoted by K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.



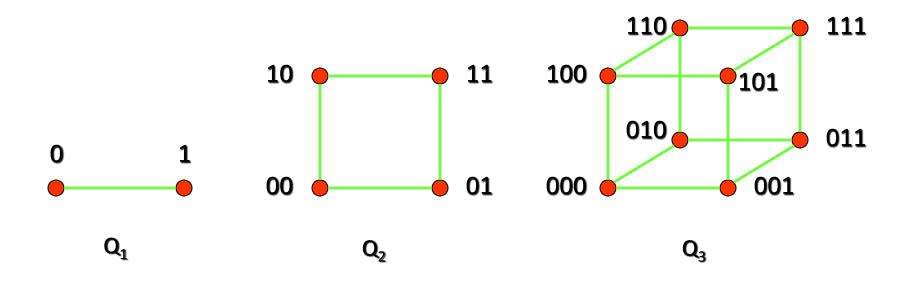
•**Definition:** The cycle C_n , $n \ge 3$, consists of n vertices v_1 , v_2 , ..., v_n and edges { v_1 , v_2 }, { v_2 , v_3 }, ..., { v_{n-1} , v_n }, { v_n , v_1 }.



•Definition: We obtain the wheel W_n when we add an additional vertex to the cycle C_n , for $n \ge 3$, and connect this new vertex to each of the n vertices in C_n by adding new edges.



•Definition: The n-cube, denoted by Q_n, is the graph that has vertices representing the 2ⁿ bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position.

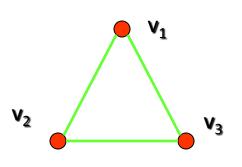


•Definition: A simple graph is called **bipartite** if its vertex set V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 with a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2).

•For example, consider a graph that represents each person in a village by a vertex and each marriage by an edge.

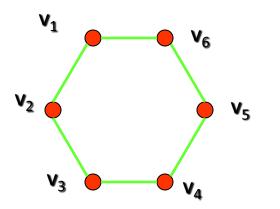
•This graph is **bipartite**, because each edge connects a vertex in the **subset of males** with a vertex in the **subset of females** (if we think of traditional marriages).

•Example I: Is C₃ bipartite?

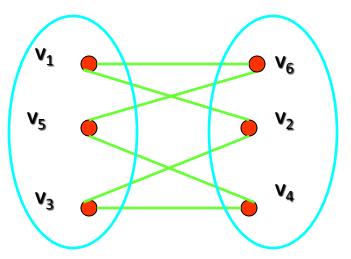


No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

Example II: Is C₆ bipartite?



Yes, because we can display C_6 like this:



•Definition: The complete bipartite graph K_{m,n} is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. Two vertices are connected if and only if they are in different subsets.

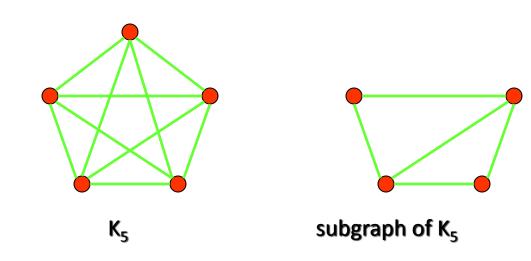


Operations on Graphs

•**Definition:** A subgraph of a graph G = (V, E) is a graph H = (W, F) where W \subseteq V and F \subseteq E.

•Note: Of course, H is a valid graph, so we cannot remove any endpoints of remaining edges when creating H.

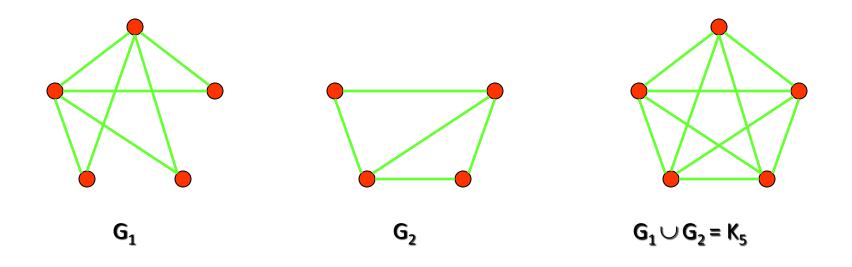
•Example:

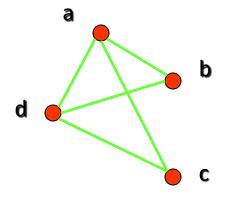


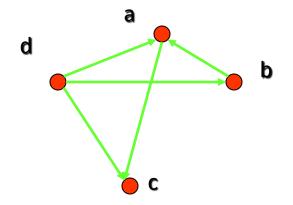
Operations on Graphs

•**Definition:** The union of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$.

•The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.







Vertex	Adjacent Vertices
а	b, c, d
b	a, d
с	a, d
d	a, b, c

Initial Vertex	Terminal Vertices
а	с
b	a
с	
d	a, b, c

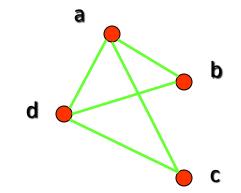
•**Definition:** Let G = (V, E) be a simple graph with |V| = n. Suppose that the vertices of G are listed in arbitrary order as $v_1, v_2, ..., v_n$.

•The adjacency matrix A (or A_G) of G, with respect to this listing of the vertices, is the n×n zero-one matrix with 1 as its (i, j)th entry when v_i and v_j are adjacent, and 0 otherwise.

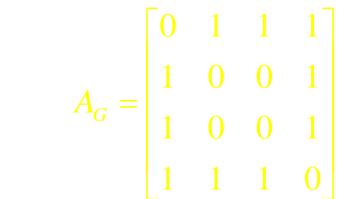
•In other words, for an adjacency matrix $A = [a_{ii}]$,

•
$$a_{ij} = 1$$
 if { v_i , v_j } is an edge of G,
 $a_{ij} = 0$ otherwise.

•Example: What is the adjacency matrix A_G for the following graph G based on the order of vertices a, b, c, d ?



Solution:



Note: Adjacency matrices of undirected graphs are always symmetric.

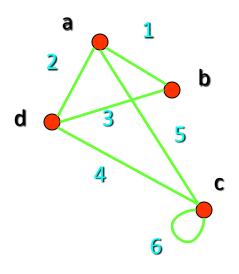
•**Definition:** Let G = (V, E) be an undirected graph with |V| = n. Suppose that the vertices and edges of G are listed in arbitrary order as v₁, v₂, ..., v_n and e₁, e₂, ..., e_m, respectively.

•The incidence matrix of G with respect to this listing of the vertices and edges is the n×m zero-one matrix with 1 as its (i, j)th entry when edge e_j is incident with v_i , and 0 otherwise.

•In other words, for an incidence matrix $M = [m_{ii}]$,

• $m_{ij} = 1$ if edge e_j is incident with v_i $m_{ij} = 0$ otherwise.

•Example: What is the incidence matrix M for the following graph G based on the order of vertices a, b, c, d and edges 1, 2, 3, 4, 5, 6?



Solution:

Note: Incidence matrices of directed graphs contain two 1s per column for edges connecting two vertices and one 1 per column for loops.

 $M = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$